
An Introduction to Automated
Trust Negotiation

Marianne Winslett

University of Illinois at Urbana-Champaign

Talk outline

Why do we need automated trust
negotiation?
(Written for people who are not

experts in security)

Theoretical and practical issues raised
by automated trust negotiation
Example results

Buying shirts from a stranger

Choose merchandise
Produce credit card
Scan card into computer
Automated phone call
Sign receipt
Compare signatures

Buying shirts from a stranger

Choose merchandise
Produce credit card
Scan card into computer
Automated phone call
Sign receipt
Compare signatures

Goal

Same ease of interaction between
strangers on line (but for a grander goal)
And with improved security and privacy
And ubiquitous

Ubiquitous

All kinds of parties
People, organizations, software entities,
hardware entities

Wherever they might be
Any interaction across security domain
boundaries---mobile or stationary

Whatever they might be doing

What might they be doing?

Financial transactions
Purchases, auctions, account management

Viewing sensitive documents
Medical records, military data

Registration
School, voting, passports, marriage license, visa,
library card

Government and business
Adoption, citizenship, work permit, joint ventures

Anything requiring paper credentials today

Broader context: move toward
open computing systems

Ability to form relationships and cooperate
to solve urgent problems

Joint military activities, joint corporate
ventures, crisis management
Unanticipated resource sharing across
organizational boundaries

Example: supply chain
management

Auto parts supplier accesses corporate
database of auto manufacturer to
determine number of widgets needed
for planned production schedule

Employed by widget manufacturer
(Employee ID)
Have privilege to plan production of
widgets (delegation from production
planning department of the supplier)

Example: kindergarten
registration

Child’s age over 5 (birth certificate)
Be parent or legal guardian (from birth
certificate or court order)
Residency within the school district
(driver’s license)
Child has had all required
immunizations (clinic records)
Attribute-based access control

Traditional access control

Assumption: I already know you

Not a member?

Traditional access control for
decentralized systems

Identity-based (logins, identity
credentials)
Administered centrally
Prevent resource sharing beyond
organizational boundaries
Hinder rapid, effective response to
threats, opportunities
Limit on-line service offerings

Can we digitize (and improve)
the paper-based approach?

My credit card
Digitize and make verifiable, unforgeable
Provide way to prove ownership or
delegation of authority to use

Store recognizing the credit card
Read and interpret fields of card
Verify ownership/delegation

Store needs policy for credit card
acceptance

Acceptable issuers
Require ownership/delegation to be
demonstrated
Check for expiration
Contact card issuer

Revocation, credit limit

If my card can be shown automatically, I
need

Policy specifying conditions under which I will
show my card
E.g., BBB membership, privacy policy, delegation
to children under certain local conditions

Store and I need a protocol
Need chance to show the relevant credentials to
each other
May need a way to find out which credentials are
relevant

We know how to do most of
this!

Credentials: X.509 and beyond
Improve privacy, nonforgeability, single-
versus multiple-use, …
Standard languages/ontologies for
expressing credential contents

Domains of trust: PKI and beyond
VISA International, BBB, my employer,
etc., as roots of PKI hierarchies

Access control policies
For every resource that a stranger might
be allowed to access

Ability to export policies
A stranger may need to understand them
to gain access to my resources
E.g., which credit cards does this merchant
accept? What will I require from the
merchant?

Pulling it all together

Parties decide which credential issuers
they trust for what purposes
Parties turn those trust decisions into
access control policies

All organizations authorized by VISA Inc. to
issue VISA cards

Parties cache relevant credentials
locally, search out others dynamically

Step 1: Alice requests a service from Bob

Trust Negotiation
E-business Example

Step 5: Alice discloses her VISA card credential

Step 4: Bob discloses his BBB credential

Step 6: Bob grants access to the serviceService

BobAlice

Step 2: Bob discloses his policy for the service

Step 3: Alice discloses her policy for VISA

Talk outline

Why do we need automated trust
negotiation?
Theoretical and practical issues
raised by automated trust
negotiation
Example results

The underlying challenge

Request access

R Alice

R’Bob

Fully automated

Policy and credential capture
and interpretation
Access control policies play a central role!

Expressive policy languages
Tools to help people write, update, and
analyze policies
Standard schemas/ontologies for
popular types of credentials
Efficient policy compliance checkers
Protection as strong as for any resource

Needed language features

Well-defined
semantics
Monotonicity
Everything relational
algebra can do, plus
transitive closure
Support for
delegation

References to the
local environment
and external
functions (e.g., time
of day, current user)
Explicit specification
of authentication
requirements

Trust negotiation architectures
Trusted third parties that are not
vulnerable to attack
Direct peer-to-peer

With disclosure of credentials/policies
Zero knowledge
Hidden credentials/OSBE

Trust negotiation strategies
Relevant for approaches that disclose
credentials and/or policies
Out of all the credentials and policies
that I could disclose next, which should
I actually disclose next?

Willing to show contents of my purse
But is there a need to know?

Autonomy? Interoperability?

Obtaining and storing
credentials

How do I get them?
Where do I keep them, to keep them
private?
How can I quickly find credentials I
haven’t cached already, during a
negotiation? (credential chain
discovery/n-party trust negotiation)

University

public_key: YY

Name: BYU

Accrediting
Body

public_key: XX

Name: ABET

Student ID

public_key: ZZ

Name: John

Supporting Credentials

University: BYU.

Expiration: 6/1/2001

YYXX

Credential Chains - Web of Trust

Establishing server trust that the client is a
student at an accredited university

Server challenges ZZ

Owned by client

Submitted by client

Scalability and deployment
How can we implement trust
negotiation in a modular, scalable, and
reusable manner that will support
ubiquitous trust negotiation?
How can trust negotiation be included
in today’s popular communication
protocols (SOAP, IPsec, TLS, etc.), in a
backwardly compatible manner?

Vulnerabilities

What kinds of attacks is trust
negotiation vulnerable to?
How can we mitigate the danger?
What parts of the process/system must
be trusted, and to what degree?
What privacy guarantees can we give?

Privacy guarantees

Can outsiders eavesdrop on negotiations?
Can I disclose just part of a credential?
Can there be a concept of “need to
know”?
What can be inferred about my
credentials without my disclosing them?
(leaks)

Managing multiple identities
Support for many identities has many
benefits for issuers and owners, today
and in the future
How to prove I possess several
identities, while preventing or
penalizing collusion?
How to make my identities unlinkable?

Talk outline

Why do we need automated trust
negotiation?
Theoretical and practical issues raised
by automated trust negotiation
Example results

Overview of the TrustBuilder project
Focus on systems work (as time permits)

TrustBuilder faculty and close
collaborators

Theory
M. Winslett, UIUC
T. Yu, NCSU
N. Li, Purdue
W. Winsborough,
GMU

Systems
K. Seamons, BYU

Applications
W. Nejdl, U. Hannover

Funding
DARPA Dynamic
Coalitions Program
NSF (ITRs on TN,
disaster response)
Industry (Zone Labs,
Dallas Semiconductor,
Network Associates
Laboratories)

Our major efforts
Policy languages

RT (constraint datalog), policy analysis
tools/computability, finding credentials at run
time, preventing leaks/attacks during negotiation,
support for sensitive access control policies

Negotiation protocols & strategies
Range of possible strategies, autonomy and
interoperability

Testbed implementations
HTTPS, TLS, content-triggered TN, hand-held TN,
PeerTrust, ...

Policy languages: the RT
family

Versions to support delegation,
credentials with internal structure,
resources with internal structure, etc.
Semantics based on Datalog
Li, Winsborough

Finding credentials at run time
The “credential chain discovery
problem”: addressed by introducing a
typing system for credentials and a
search mechanism

Li & Winsborough

“N-party trust negotiation”: a peer to
peer approach

Nejdl, Winslett, soon Bertino

Policy analysis algorithms &
tools

New computability results for analysis
of RT policies

Li & Winsborough
Planned continuation to turn computability
results into algorithms and tools

Leaks during trust negotiation
Behavior during a negotiation gives strong
clues about what credentials you might have
(even with a zero-knowledge approach)
An attacker can provoke even more leaks

Game theory (Winslett)
Proposed remedies

Acknowledgement policies (Li & Winsborough)
Hidden credentials/OSBE (Seamons/Li &
Winsborough)
Probabilistic approaches (Winslett)
Policy filtering (Yu, Winslett)
And more …

Support for sensitive policies
Acknowledgement policies (to some
degree)
UniPro

Treats policies as first class named
resources that can be protected like any
other resources
Yu, Winslett

Protocols & strategies,
interoperability and autonomy

Goal: allow autonomy while supporting
interoperation
Approach

Simple protocols for permissible message
exchanges
Large sets of strategies with proven
interoperability (completeness)
Extensions to n-party trust negotiation
Yu, Winslett, soon Bertino

Systems issues
The TrustBuilder prototype
Extensions to TLS, SMTP, HTTPS,
IPSec, etc., to support trust negotiation
Surrogate TN (for wireless devices)
Content-triggered TN (for pushing
sensitive information)
Seamons

Main applications

Educational consortia
PeerTrust (n-party trust negotiation)
Nejdl, Winslett

Disaster management
In LA
Cross-disciplinary: police, firefighters,
government officials, computer scientists,
sociologists

Talk outline

Why do we need automated trust
negotiation?
Theoretical and practical issues raised
by automated trust negotiation
Example results

Overview of the TrustBuilder project
Focus on systems work (as time
permits)

TrustBuilder systems work at BYU
Goals

Ubiquitous trust negotiation facilities, to
meet security needs at all levels
Scalable, modular, reliable implementations
of those facilities

Overall strategy: deploy TrustBuilder in
every popular communications protocol

HTTPS, TLS, SMTP, ssh, more on the way
As security agents, in Java

TrustBuilder in HTTPS

Client, server establish normal TLS/SSL
session
Then trust negotiation messages are passed
back and forth in HTTPS headers
Use of HTTPS protects against eavesdropping
Convenient when authorization module is
implemented at the application level (with
respect to the web server)

Negotiating trust in TLS

Transport Layer Security (TLS) = IETF version
of SSL 3.0
TLS-level trust negotiation facilities are useful
when

web server/client have proxies that can negotiate
trust for them
web server/client know how to do trust negotiation
directly
Other protocols built on top of TLS (e.g., SOAP)
need to negotiate trust, but lack the facilities
TLS security (confidentiality, authentication of
identity) is too limited for a particular web
server/client

Limitations of TLS authentication

Certificates are exchanged in plain text
Client and server each disclose only one
certificate chain
Server can specify a list of trusted certifying
authorities; client cannot
Server always discloses its certificate first
Server certificate ownership is not yet
established when the client discloses its
certificate

Trust Negotiation in TLS (TNT)
Extends the TLS handshake protocol (where TLS
does its authentication)
Leverages existing and proposed features of the
TLS handshake protocol

Client hello and server hello extensions
TLS rehandshake
Session resumption (avoids expensive computation of a
new session key)

Retains compatibility with TLS
Implementation extends PureTLS (free, Java)

Handshakes in TLS / TLS + RSA
key exchange algorithm

TLS+RSA Hello Parameters
TNT adds NegotiationStrategyFamily parameter for
ClientHello and ServerHello

TNT Protocol
New parameters:

HelloNegotiationRequest
ServerTurnDone
ClientTurnDone
NegotiationDone
Policy (opaque struct, specific to
the negotiation strategy family)
Never part of initial handshake
Server doesn’t know URL/POST
data yet

Rehandshakes normally used to
upgrade cypher suite, change
master secret

TNT enhances TLS authentication

Negotiation occurs on an encrypted channel
Client and server can exchange multiple
certificate chains
Either the client or server can disclose
certificates first
Client and server can exchange multiple
policies
Client and server demonstrate certificate
ownership as certificates are disclosed

Many network protocols disclose
sensitive content

method parameters and namesCORBA

uploaded news postingNNTP

method parameters and namesSOAP

transferred filesFTP

email messages, attachmentsSMTP

form data, headers, cookies, URLsHTTP

Potential Sensitive Data in ProtocolProtocol

Pushing sensitive content
Problem:

These protocols disclose sensitive information
to strangers without verifying that the recipient
is authorized to receive it
Sensitive content is frequently generated
dynamically, making it difficult to associate
access control policies with the content in
advance

Solution:
A (non-malicious) attempt to transmit sensitive
data generates appropriate policies
dynamically and initiates “content-triggered
trust negotiation”

SMTP content-triggered TN

Other example uses

Typo pirates:
www.paypa1.com vs. www.paypal.com

HTTP URL login
http://www.trustedsite.com/~.../@hacker.org

Deceptive login name Actual URL

IE address bar URL spoofing flaw
(announced Dec. 10, 2003 by Sam Greenhalgh)
(patch available Feb. 2, 2004 from Microsoft)

http://microsoft.com[null character]@hacker.org

causes browser to display

http://microsoft.com

Phishing attacks

Definition:
“The mass distribution of e-mail messages with
return addresses, links, and branding which appear
to come from legitimate companies, but which are
designed to fool the recipients into divulging personal
authentication data”
(www.antiphishing.org)

“Up to 20% of recipients may respond to [the
phishing attack], resulting in financial losses, identity
theft, and other fraudulent activity.”
(www.antiphishing.org)

Phishing attack example

Phishing attack example

travis2004

Possible URL spoofing attack:
http://pages.ebay.com/reactivate[null]@steal_your_identity.com

